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VIII. Topological Aspects of Oscillating Chemical Reactions [1] 

R. Bruce King 
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The following procedure is described for investigating the qualitative 
dynamics of simple chemical systems: l) A so-called influence diagram is 
generated representing the relationships between the reference reactants 
(phase-determining intermediates); 2) This influence diagram is used to 
generate a " truth table" indicating possible transitions between state vec- 
tors representing the signs of the time derivatives of of the reference 
reactant concentrations; 3) The truth table is used to determine a state 
transition diagram representing the flow topology around unstable equilib- 
rium points; 4) The characteristic equation of the adjacency matrix of the 
influence diagram is solved in order to determine the presence of such 
unstable equilibrium points. The two types of qualitative dynamics possible 
for chemical systems containing two reference reactants and one feedback 
circuit are bifurcation between two attracting regions (bistability) and limit 
cycle oscillation. However,  in two reference reactant systems oscillation 
requires an additional self-activating loop to generate the unstable equilib- 
rium point required for its realization. Bistability and limit cycle oscillation 
are also two of the possible types of qualitative dynamics for chemical 
systems containing three reference reactants. However,  chemical systems 
with three reference reactants and two or more feedback circuits can also 
contain interlocking limit cycles, which can lead to toroidal oscillations or 
chaos. The influence diagrams are given for the systems exhibiting these 
various types of dynamic behavior along with a summary of the important 
properties of all 729 possible influences for simple chemical systems con- 
taining three reference reactants. 

Key words: Group theory, chemical applications of - - Topology, chemical 
applications of - - Oscillating chemical reactions, topological aspects of - .  

1. Introduction 

The first example of a homogeneous chemical reaction system exhibiting 
oscillatory behavior was the iodate-hydrogen peroxide system discovered by 
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Bray in 1921 [2, 3]. However~ extensive interest in chemical oscillations only 
developed after the discovery by Belousov [4] of a system containing citric 
acid, cerium (IV), and bromate in acidic aqueous solution which exhibits highly 
reproducible periodic behavior. Subsequent work by Zhabotinskii [5, 6] led to 
minor modifications of the reactants (e.g. substitution of other brominatable 
compounds for the citric acid such as malonic acid) which resulted in improved 
oscillatory behaviour so that this reaction is now known as the Belousov- 
Zhabotinskii reaction. Since then oscillatory chemical reactions have been 
studied extensively both experimentally and theoretically [7, 8, 9] particularly 
because of their value as models for important biological phenomena [10] 
including nerve and muscle action, cell respiration, mitosis, morphogenesis, and 
regeneration of damaged cells. Still more recently R6ssler has begun to 
develop the theory of chemical systems exhibiting still more exotic kinetics 
including toroidal (biperiodic) oscillations [11] and nonperiodic oscillations 
("chaos") [11, 12, 13, 14]. 

Despite all of this extensive recent research, both experimental and theoretical, 
in oscillating chemical reactions, no progress has been made in developing 
methods to synthesize real homogeneous chemical oscillatory behavior. Thus 
the known homogeneous chemical oscillators, including the Bray-Liebhafsky 
iodate/hydrogen peroxide [2, 3] and the Belousov-Zhabotinskii 
bromate/malonic acid/cerium (IV) [4, 5, 6] systems, were discovered by acci- 
dent. Elegant experimental work mainly by Noyes and co-workers [15, 16, 17] 
has elucidated the salient features of the kinetics and mechanisms of such 
chemical oscillators. Equally elegant applied mathematical techniques have 
been used to analyze theoretically the dynamics of specific systems [10]. 
However, the general pattern of most of the experimental and theoretical work 
has been to examine specific dynamic systems in great detail with much less 
attention being given to the total scope of the possibilities for dynamic systems 
exhibiting oscillatory behaviour. More general treatments of oscillating reac- 
tions include a 1967 paper by Higgins [18] and a 1973 paper by Tyson and 
Light [19]. However, both papers are limited to two-component systems (i.e. 
systems with two phase-determining intermediates in the terminology below). 
Attempts to extend these treatments to systems containing three or more 
components lead to considerable difficulties. 

This paper describes a technique based on switching circuit theory [20] and 
several recent papers by Glass [21, 22, 23, 24, 25] for uncovering some impor- 
tant qualitative features of the dynamics of relatively complicated chemical 
systems, particularly those undergoing oscillations of various types. This treat- 
ment involves an exhaustive analysis of all dynamic systems of a given type at 
considerable expense in the quantitative treatment of a specific system. 

2. General Background 

The species found in chemical oscillators can be classified as major reactants, 
reference reactants, and derived reactants with the following characteristics 
[16, 17]. 
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1) Major reactants: The major reactants are consumed irreversibly to generate 
the free energy change that drives the oscillatory system. Their  variations 
during a single cycle of oscillation represent only small fractions of their total 
concentrations. For this reason an approximate description of a chemical 
oscillator can regard the concentrations of the major  reactants as almost 
constant during the period of a single oscillation. For example, the major 
reactants in the Belousov-Zhabotinskii  reaction are bromate and malonic acid 
[16]. 

2) Reference reactants: In a chemical oscillator the concentrations of the 
reference reactants provide sufficient information to define the position of the 
system along the trajectory of its oscillations as a point in n-dimensional space 
("concentration space") where n is the number of reference reactants and the 
coordinates correspond to the concentrations of each reactant. The necessarily 
positive concentrations of the reference reactants are mutually independent so 
that any point in the positive octant of the concentration space is potentially 
accessible. The reference reactants in chemical oscillators have also been called 
phase-determining intermediates [17], phase variables, and state variables in 
various papers. The reference reactants in the Belousov-Zhabotinskii  reaction 
are bromous acid, bromide, and cerium (IV) [16]. 

3) Derived reactants: The concentrations of the derived reactants are generally 
much less than those of the reference reactants. Furthermore,  the concentra- 
tions of the derived reactants cannot be varied independently from those of the 
reference reactants. Examples of derived reactants in the Belousov- 
Zhabotinskii reaction are BrO2, HOBr,  and Br2 [16]. 

This paper discusses the properties of chemical reaction systems containing 
three reference reactants which will be designated X, Y, and Z throughout the 
paper. The position of the system can thus always be defined by a point in the 
positive actant of three-dimensional space (R3). An equilibrium point of such a 
three reference reactant system is defined by Eq. (1) 

J~= ~ / = Z , = 0  (1) 

where the dots refer to the time derivatives dX/dt, dY/dt, and dZ/dt, respec- 
tively. Such an equilibrium point is stable if all nearby solutions stay nearby for 
all future time [26]. In the case of a two-dimensional system where a third 
dimension represents energy (mathematically a Liapunov function [26], which 
can never decrease), a stable equilibrium represents a pit and an unstable 
equilibrium represents a peak. In order to evaluate the stability of an equilib- 
rium point in a three-dimensional system, the following determinantal equation 
must be solved: 

= 0.  (2)  
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In this equation the zero subscripts refer to the values of the indicated partial 
derivatives at the equilibrium point being evaluated. 

Expanding the determinant in Eq. (2) gives a cubic polynomial characteristic 
equation: 

A)t3 + B)t2 + CA + D  = 0. (3) 

For  a given equilibrium point to be stable all solutions )t of the corresponding 
characteristic polynomial (Eq. (3)) must have a negative real part. Existence of 
even one solution of Eq. (3) with a positive real part is sufficient to indicate 
instability of the corresponding equilibrium point [27]. 

Stable equilibrium points are clearly significant in indicating where a dynamic 
system, including a chemical one, will come to rest. The significance of unstable 
equilibrium points in determining dynamic behavior is not as obvious and 
depends upon the neighborhood around the unstable equilibrium point (i.e. the 
topology). This paper provides a method for evaluating the topology around 
unstable equilibrium points in chemical systems to obtain information concern- 
ing their dynamic behavior. A method for determining the existence of 
unstable equilibrium points based on the above principles is also presented. 

3. Systems with Two Reference Reactants 

Some of these concepts can be clarified by considering a chemical system 
containing two reference reactants X and Y with the following provisions: 1) 
Only unimolecular and bimolecular reactions are allowed in accord with what 
is chemically reasonable; 2) The concentrations of all reactants other than the 
reference reactants X and Y are incorporated into the rate constants; since all 
concentrations are positive, the signs of these rate constants are not affected by 
this provision; 3) All rate constants are defined in such a way that they are 
positive. Under  such conditions Tyson and Light [19] have derived the follow- 
ing expressions: 

Y(= ko + k l X  + k2 Y -  k3 x 2  + k 4 X Y  q- k5 Y2 (4a) 

"(1 z = CO -t- Cl y 4- c2X  - c 3 y2  4- c4 Y X  q- c s X  2 (4b) 

where the permissible signs of the terms are determined as follows: 
1) k0, k2, ks, Co, C2, and c5 are positive since a chemical species can only 

disappear at a rate proportional to a non-zero power of its concentration 
(otherwise concentrations could become negative - obviously unreasonable). 

2) k3 and Ca are negative because the restriction to unimolecular and 
bimolecular processes requires these rate constants to correspond to proces- 
ses destroying X and Y, respectively. 

In Eqs. (4a) and (4b) a term with a positive sign corresponds to an activating 
step and a term with a negative sign corresponds to an inhibiting step. At an 
equilibrium point (steady state) X = Y = 0 leading to 

0 = ko + k l X +  k 2 Y -  k3 x 2 +  k 4 X Y +  k s Y  2 (5a) 

0 = Co :t: cl Y + c2X  - c3 y2  + c4 Y X  + c s X  2. (5a) 
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In order to evaluate the stability of the equilibrium point we must evaluate the 
derivatives (OX/OX)o, (OX/OY)o, (OY/OX)o, and (OY/OY)o at the steady state in 
order to set up the following 2 x 2 determinantal equation analogous to Eq. 
(2): 

O-- 0 

\OY/o [ 

(6) 

Differentiating (4a) and (4b) we obtain the four derivatives 

OX/OX = + k l  - 2k3X+ k 4 Y (7a) 

Of~/O Y = k24- k4X + 2ks Y (7b) 

O Y / O X  = c 2 4- c4 Y + 2 c 5 X  (7c) 

O Y/O Y = 4-cl - 2c3 Y +  c 4 X  (7d) 

These derivatives (7a-7d) are evaluated at the steady states represented by 
Eqs. (5a) and (5b). The resulting values are then substituted into determinantal 
Eq. (6). Solution of the resulting quadratic equation for the eigenvalues A 
provides information concerning the stability of the resulting equilibria based 
on the signs of the real parts of the eigenvalues. 

4. Extension to Systems with Three Reterence Reactants 

Consider now a chemical system containing three reference reactants X, Y, and 
Z and only unimolecular and bimolecular reactions. The analogues to Eq.s. (4a) 
and (4b) have ten terms as exemplified by the following equation for X: 

f (  = ko .-t- k l  x + k2 y + k3 Z -4- k 4 X Y  4- k s X Z  + k6 Y Z  - k7 X2 + k s y2 + k9Z2. (8) 

In order to obtain the entries for the determinantal Eq. (2) (Section 2) nine 
partial derivatives with four terms each must be evaluated at the steady states 
as exemplified by the following equation for OX/OX: 

OX/OX = 4-k 1 4- k 4 Y +  k s Z -  2kTX. (9) 

By expansion of the determinant in Eq. (2) we obtain a cubic Eq. (3) (Sect. 2) 
where 

A = 1 (lOa) 

B = a sum of three different four-term polynomials = a twelve term polyno- 
mial (10b) 

C = a sum of six different binary products of four-term polynomials 
= a 96-term polynomial (96 = 6 �9 42) 

D = a sum of six different ternary products of four-term polynomials 
= a 384-term polynomial (384 -- 6 �9 43) 

(10c) 

(lOd) 
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Thus a general t reatment of the three reference reactant system by the 
Tyson-Light method [19] results in a cubic equation (3) with 1 + 1 2 + 9 6 +  
384- -493  terms. In this 493-term equation we must substitute the equilibrium 
values of X, Y, and Z and then solve for 3. in order to determine the signs of 
the real parts of the roots. Clearly this method is intractable for a general 
t reatment of the three reference reactant system analogous to the Tyson-Light  
t reatment  [19] of the two reference reactant system. 

The method discussed in this paper for evaluating the qualitative dynamics of 
chemical systems by examination of the flow topology around their unstable 
equilibrium points in contrast to the Tyson-Light  method [19] can be extended 
beyond systems with two reference reactants to systems with three and possibly 
even more reference reactants without running into analogous problems of 
intractability. Furthermore,  restrictions to systems containing exclusively unim- 
olecular and bimolecular reactions are no longer necessary. This paper discus- 
ses application of these methods to systems containing three reference reac- 
tants. Well characterized chemical systems which have been definitely shown to 
contain more than three reference reactants have not yet been found. Further-  
more, this work shows that three reference reactants are sufficient to model the 
interesting types of exotic dynamics including periodic (limit cycle), biperiodic 
(toroidal), and non-periodic (chaotic) oscillations. 

5. Influence Diagrams 

In order to use switching circuit theory [20] to examine the flow topology 
around unstable equilibrium points, a graphical method is first required to 
represent relationships between the reference reactants. A directed graph 
[28, 29] with one vertex for each reference reactant is used for this purpose. 
An edge is directed from a vertex representing a given reference reactant to a 
vertex representing another  reference reactant whose rate of change in con- 
centration is affected by the first reference reactant. Such a directed edge is 
given a positive weight if the relationship is one of activation and a negative 
weight if the relationship is one of inhibition. If a given reference reactant has 
no effect on another  given reference reactant, then the corresponding directed 
edge vanishes. For convenience such directed graphs will be called influence 
diagrams. 

At this point it is necessary to distinguish between simple and composite 
chemical  systems. The dynamics of a simple chemical system can be rep- 
resented by a single influence diagram throughout  the entire relevant region of 
concentration space. However,  a composite chemical system requires more 
than one influence diagram to represent its dynamics in the relevant region of 
concentration space. This paper will consider simple chemical systems where a 
single influence diagram is sufficient for the analysis of their dynamics. All of 
the known types of exotic dynamics including periodic (limit cycle), biperiodic 
(toroidal), and non-periodic (chaotic) oscillations can be modelled by simple 
chemical systems containing three reference reactants. Furthermore,  it is 
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desirable to understand first the fundamental dynamics of simple chemical 
systems before studying ways of piecing such simple chemical systems together 
to form composite chemical systems. 

The construction of influence diagrams can be clarified by considering their 
relationship to the kinetic equations. Consider two reference reactants X and 
Y. If (OY/OX)< 0 then the influence diagram contains an edge directed from 
the X vertex to the Y vertex with a negative weight indicating that X inhibits 
Y. Conversely, if (OY/3X)>O then the influence diagram contains an edge 
directed from the X vertex to the Y vertex with a positive weight indicating 
that X activates Y. A simple chemical system is thus one where the derivatives 
of the type (3 Y/OX) do not change sign in the relevant region of concentration 
space. 

Now consider a chemical system containing n reference reactants. In order to 
keep the number of cases tractable, particularly for the three reference reactant 
systems treated in detail in this paper, ignore self-activation (e.g. X activates 
X) and self-inhibition (e.g. X inhibits X) since their effects can be considered 
later. The maximum number of directed edges in an influence diagram not 
including self-inhibition and self-activation is twice the number of edges in the 
corresponding complete graph K n where a complete graph is defined as a set of 
n vertices with a single undirected edge between every possible pair of vertices 
[30]. Furthermore, each of these directed edges can independently be positive 
(i.e. X activates Y), negative (i.e. X inhibits Y), or can vanish completely (i.e. 
X does not affect Y). Thus for a system containing two reference reactants, the 
complete graph K2 (a straight line segment) has one "edge", the influence 
diagrams have a maximum of two edges (one from X to Y and one from Y to 
X) and there are 32= 9 different possible influence diagrams. Figure 1 shows 
these nine possible influence diagrams for two reference reactant systems. 
Similarly for a system containing three reference reactants, the complete graph 
/(3 (a triangle) has three edges, the influence diagrams have a maximum of 
2 �9 3 = 6 edges, and there a r e  3 6 - -  729 possible influence diagrams. 

I have found all 729 of these possible influence diagrams for three reference 
reactant systems but it would be of little value and a waste of space to depict 
them individually in this paper. Instead it is convenient to group them together 
in classes and families. A class of influence diagrams consists of all such 
diagrams that can be superimposed by a symmetry operation considering all 
vertices to be equivalent (i.e. temporarily ignoring for classification purposes, 
the obvious differences between the different reference reactants). In o the r  
words vertex labellings are ignored when influence diagrams are grouped into 
classes. 

Thus for the nine influence diagrams in Fig. 1, the pairs B and D, C and E, and 
G and H are each superimposable by two-fold rotations so that the members 
of each pair belong to the same class. The nine influence diagrams for a two 
reference reactant system thus form six classes: A, B + D, C+ E, F, G + H, and 
J. All influence diagrams of a given class represent systems exhibiting identical 
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qualitative dynamics. It is therefore necessary to determine the qualitative 
dynamics of only one influence diagram in each class in order to know the 
qualitative dynamics for each member  of the class. A family of influence 
diagrams consists of all influence diagrams which become identical when the 
distinction between plus and minus signs is dropped. In other words edge 
labellings are ignored when classes are grouped into families. Thus for the nine 
influence diagrams in Fig. 1, there are the three families A, B + C + D + U, and 
F + G + H + J .  A circuit in an influence diagram (which represents feedback) 
consists of a path which starts with a given vertex and follows various edges in 
the directions of their arrows until the original vertex is reached again. The 
length of a circuit is the number  of edges that must be traversed from the 
original vertex until the original vertex is reached again. A loop in an influence 
diagram is a circuit of length 1 (i.e. consisting of an edge starting and finishing 
at the same vertex). Loops represent self-activation or self-inhibition. The 
circuit structure of an influence diagram is important for determining its 
feedback properties. All influence diagrams belonging to the same family have 
the same circuit structure. An oscillatable influence diagram has the following 
two properties which correspond to the need for a connected influence diagram 
with circuits containing all reference reactants: 

| | 
A 

4- 

B C 

+ + 

D E F 

(3 H d 

Fig. 1. The nine possible influence 
diagrams for systems containing 
two reference reaetants X and Y 
excluding systems with loops (self- 
activation or self-inhibition) 

1) Each vertex has at least one edge directed towards it (i.e., a sink in the 
graph theoretical sense [28, 29]) and one edge directed away from it (i.e., a 
source in the graph theoretical sense). 

2) The directed graph representing the influence diagram is connected (i.e. 
consists of a single component  so that every vertex can be reached from every 
other vertex by a path along the edges). 

These two properties represent trivial necessary conditions for an influence 
diagram to represent an oscillatory process in which all of the state variables 
are reference reactants and are involved in the oscillation. For this reason we 
need to consider only such oscillatable influence diagrams when evaluating the 
dynamics of oscillating chemical systems. 
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Fig. 2. The 16 families of possible influence 
diagrams for systems containing three refer- 
ence reactants excluding systems with loops 
(self-activation or self-inhibition) 

The 729 possible influence diagrams for three state variables can be divided into 16 
families as depicted in Fig. 2. These families correspond to the digraphs with three 
points depicted by Harary [31]. Some of the important properties of these 16 
families are summarized in Table 1. Only five of these 16 families containing a total 
of 416 possible influence diagrams are oscillatable and therefore can represent 
reference reactants in oscillating chemical systems. 

6. Chemical Systems as Discrete Switching Networks 

Consider a chemical system in which the concentrations of the reference 
reactants as defined above are the dependent  variables and time is the 

Table 1. Some properties of the 16 families of possible influence diagrams for systems with three 
reference reactants 

Total number  
Family Number  of influence Number  Number  
(Fig. 2) of classes diagrams of edges of circuits Connected Oscillatable 

A i 1 0 0 No No 
B 2 12 1 0 No No 
C 4 24 2 0 Yes No 
D 3 12 2 0 Yes No 
E 3 12 2 0 Yes No 
F 3 12 2 1 No No 
G 4 16 3 1 Yes Yes 
H 8 48 3 0 Yes No 
J 8 48 3 1 Yes No 
K 8 48 3 1 Yes No 
L 16 96 4 2 Yes Yes 
M 10 48 4 1 Yes No 
N 10 48 4 1 Yes No 
P 10 48 4 2 Yes Yes 
O 20 192 5 3 Yes Yes 
R 16 64 6 5 Yes Yes 
Total 126 729 
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independent  variable. Each of the reference reactants can be assigned a 
discrete value of 1 if the first time derivative of its concentration is positive (i.e. 
increasing concentration) and a discrete value of 0 if the first time derivative of 
its concentration is negative (i.e., decreasing concentration). A synchronous 
switching network is then set up in which time is quantized so that the signs of 
the first time derivatives of the concentrations of the reference reactants at 
time t+  1 are determined by their signs at time t [21]. 

The switching state at any given time of such a chemical system containing n 
reference reactants can be represented by an n-vector of l ' s  and O's corres- 
ponding tO the signs of the first time derivatives of the concentrations of each 
of the n reference reactants. Such an  n-vector  is called a state vector. The total 
possible number of different such state vectors is 2 n. These state vectors may be 
represented by the 2 n vertices of an n-dimensional cube (or square when 
n = 2). Furthermore,  the possible transitions from states at synchronous time t 
to those at time t + 1 may be represented by arrows directed along the edges of 
the n-cube. In this t reatment the discrete time scale t is chosen so that it 
advances one unit each time a single component  of the state vector changes. 
The resulting n-cube with directed edges is called a state transition diagram. It 
represents transitions around an equilibrium point or region corresponding to 
the center of the n-cube where all of the first time derivatives of the reference 
reactant concentrations are zero. The transitions represented by the state 
transition diagram are significant if the center of the diagram represents an 
unstable equilibrium point or region. In this case the transitions represented by 
the state transition diagrams define the fundamental topology of the flow in the 
neighborhood of the unstable equilibrium point. 

7. Generation of State Xransition Diagrams from Influence Diagrams 

The influence diagrams represent the activation and inhibition relationships 
involving the reference reactants. The state transition diagrams depict the 
qualitative features of important kinetic behavior on the basis of the flow 
topologies around unstable equilibrium points or regions. This section discusses 
a convenient method developed by Glass [23] for deriving the state transition 
diagram corresponding to a given influence diagram. This provides a simple 
method for determining the important  possibilities for the dynamics of a given 
system from its rate equations. 

The first step of this method uses the influence diagram to generate a truth 
table, so called by analogy with Boolean logic [20]. In order  to show how such 
a truth table is generated let us consider possible effects of one reference 
reactant X on a second reference reactant Y. If X activates Y as depicted by a 
positive arrow from X to Y in the influence diagram, then in the truth table the 
values for Y in each possible state vector at time t + 1 will correspond to the 
values for X at time t. This relates to the fact that when X activates Y, an 
increase in the concentration of X (represented by 1) will eventually lead to an 
increase in the concentration of Y (also represented by 1) and vice versa. 
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H o w e v e r ,  if X inhibits  Y as depec t ed  by a nega t ive  a r row f rom X to Y in the 

inf luence diagram,  then  in the t ruth table the values  for  Y at t ime t + 1 will be  

oppos i te  of the values  for  X at t ime t (i.e., a 0 for  X at t ime t will lead to a 1 

for Y at t ime  t + 1 and vice versa).  This  re la tes  to the fact that  when  X inhibits  

Y, an increase  in the  concen t ra t ion  of X ( represen ted  by 1) will even tua l ly  lead 

to a decrease  in the concen t ra t ion  of Y ( represen ted  by 0). These  effects are 

summar i zed  in Tab le  2. 

Table 2. General effects of activation and inhibi- 
tion on the truth table 

Time Time 
t t + l  
X Y 

0 0 
1 1 

X activates Y 
+ 

X > Y 

Time Time 
t t + l  
X Y 

0 1 
1 0 

X inhibits Y 

X ~ Y 

Table  3 i l lustrates appl icat ions  of this p rocedure  for  de t e rm ina t i on  of the truth 

tables  for the four  osci l latable two r eve rence  reac tant  systems F, G, H, and J in 

Fig. 1. Thus  in the t ruth table  for system F where  X act ivates  Y and Y 

act ivates  X, the Y co lumn for t ime t + 1 is the same as the X co lumn for t ime t 

and the X co lumn for  t ime t + 1 is the same as the Y co lumn for  t ime t. 

Table 3. Truth tables for oscillatable two reference reactant systems 

Initial 
state State at time = t + 1 
time = t F a G ~ H a j a  

X Y  X Y X Y X Y X Y 
0 0 0 0 *a 1 0 TM 0 1 **e 1 1 
1 0 0 1 1 1TM 0 0 T M  1 0 *a 
0 1 1 0 0 0 TM 1 1TM 0 1 *a 
1 1 1 0 0 0 T M  1 i T M  0 1 *a 

Type of state 
transition diagram 
(Fig. 3) 

8 2 C 2 C b B ~  

a See Fig. 1. 
b Direction reversed over C 2 in Fig. 3. 
c B2 in Fig. 3 rotated 90 ~ 
a Attracting regions (i.e., steady time derivative polarity). 
e Transitions involving change of only a single vector component. 

T h e r e  remains  the p r o b l e m  of de te rmin ing  a state t ransi t ion d iagram for a 

given t ruth table.  The  fol lowing a lgor i thm d e v e l o p e d  by Glass [23] can be  used 
for this purpose :  
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1) Select two state vectors corresponding to an edge of the n-cube and the 
state of the system at time t. Such a pair of state vectors will be identical except 
for one component  (conveniently called the switching component). In one of 
the state vectors chosen the switching component  will be 0 corresponding to a 
negative first time derivative of the concentration of the corresponding refer- 
ence reactant (conveniently called the switching reference reactant). In the other 
state vector chosen the switching component  will be 1 corresponding to a 
positive time derivative of the switching reference reactant. 

2) Compare the switching components in the corresponding state vectors at 
discrete time t+l.  If both such components are 0, then the arrow on the 
corresponding edge of the n-cube will be directed towards the vertex corres- 
ponding to the state vector (at discrete time t) where the switching component  
is 0. If both components  Corresponding to the switching reference reactant for 
corresponding state vectors at discrete time t+  1 are 1, then the arrow on the 
corresponding edge of the n-cube will be directed towards the vertex corres- 
ponding to the state vector (at discrete time t) where the switching component  
is 1. The third and remaining possibility, where one component  corresponding 
to the switching reference reactant for the corresponding state vector at 
discrete time t + l  is 0 and the other such component  is 1, prevents the 
assignment of an edge direction, but this possibility only arises when consider- 
ing a feedback circuit not containing the switching reference reactant. 

3) Repeat  this procedure for the other pairs of state vectors corresponding to 
the remaining edges of the n-cube until all of the edges have been considered. 

Let  us now illustrate this procedure by converting the truth tables in Table 3 to 
the state transition diagrams in Fig. 3. Consider first the truth table for F in 
Fig. 1 given in Table 3. For the 00-10 edge the switching reference reactant is 
X and the switching component  for both vectors at time t + 1 is 0. Therefore  
the arrow on the 00-10 edge must point towards the 00 vertex. Similarly, for 
the 00-01 edge the switching reference reactant is Y and the switching 
component  for both vectors at time t+  1 is 0. Therefore,  the arrow on the 
00-01 edge must also point towards the 00 vertex. Similarly, the arrows on the 
11-10 and the 11-01 edges both must point towards the 11 vertex since in 
both cases the switching component  of the state vectors at time t + 1 is 1. These 
four edge directions correspond to the B2 state transition diagram of Fig. 3. 
The B2 state transition diagram can represent a bistable system where the 
unstable equilibrium point is a saddle point on the energy surface between two 
attracting regions. The vertices 00 and 11 in the B2 state transition diagram in 
Fig. 3 correspond to the attracting regions in this dynamic system. A charac- 
teristic feature of such attracting regions is that their state vectors do not 
change from time t to time t + 1 on the discrete time scale. 

Now let us consider the truth table for G in Fig. 1 given in Table 3. In this case 
the switching component  of the 00-10 edge corresponding to the reference 
reactant X is 1 at time t + 1 for both state vectors. Therefore,  the arrow on the 
00-10 edge must point towards the 10 vertex. Continuing the same procedure 
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Bz Ca 

101 ~ .111 101 ) 111 

000- 010 000 010 

B3 C3 

Fig. 3. State transition diagrams re- 
sulting from two and three reference 
reactant systems containing a single 
feedback circuit 

for the remaining edges of the state transition square defines the directions of 
the edge arrows as 00---~ 10, 10--~ 11, 11-->01, and 01-~00, thereby leading to 
the C2 state transition diagram of Fig. 3. This C2 state transition diagram 
appears to be a necessary condition for a limit cycle surrounding the unstable 
equilibrium point. 

Analogous procedures show that the influence diagram H in Fig. 1 leads to a 
C2 state transition diagram with the limit cycle turning in the opposite direction 
to that given in Fig. 3. Similarly the influence diagram J in Fig. 1 leads to a B2 
state transition diagram rotated by 90 ~ relative to that in Fig. 3 so that the 01 
and 10 vertices rather than the 00 and 11 vertices correspond to the attracting 
regions. We thus see how all of the possible oscillatable two reference reactant 
systems lead either to bistable systems (B2 in Fig. 3) or limit cycles ((22 in Fig. 
3). Indeed circuits of length 2 and types F and J in Fig. 1 will be classified as 
B2 circuits and those of types G and H in Fig. 1 will be classified as C2 circuits. 
This classification is useful when dissecting more complex chemical dynamic 
systems containing multiple feedback circuits. 

Now let us consider oscillatable three reference reactant systems containing a 
single feedback circuit. These are four classes of possible influence diagrams 
corresponding to the four classes of family G in Fig. 2 (see Table 1). 
Prototypes of these four classes of possible influence diagrams are depicted in 
Fig. 4. The corresponding truth tables are depicted in Table 4. These lead to 
two basic types of state transition diagrams labelled as B3 and C3 in Fig. 3. 

Consider first the influence diagram A in Fig. 4. The corresponding truth table 
(Table 4) shows that the state vectors 000 and i l l  in the state transition 
diagram represent attracting regions. Application of the Glass algorithm out- 
lined above shows that the three edges 100-000, 010-000, and 001-000 are all 
directed towards the 000 vertex and the three edges 110-111, 101-111, and 
011-111 are all directed towards the i l l  vertex. The remaining six edges of 
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Table 4. Truth tables for oscillatable three reference reactant systems with a single feedback 
circuit 

Initial 
state State at time = t + 1 of influence diagrams in Fig. 4 
time = t A B C D 
X Y Z X Y Z X Y Z X Y Z X Y Z 

0 0 0  0 0 0  a 1 0 0  b 1 0 1  1 1 1  
1 0 0 0 1 0 1 1 0 b 1 1 1 1 0 1 b 
0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 b 
0 0 1 1 0 0 0 0 0 b 0 0 1 a 0 1 1 b 
1 1 0 0 1 1 1 1 1 b 1 1 0 a 1 0 0 b 
1 0 1 1 1 0 0 1 0 0 1 1 0 0 1 b 
0 1 1 1 0 1 0 0 i b 0 0 0 0 1 0 b 
1 1 1 1 1 1 a 0 1 1 b 0 1 0 0 0 0 

Type of state 
transition diagram 
(Fig. 3) 

B 3 C3 B3 C3 

Attracting regions: state vector remains unchanged. 
b Transitions involving change of only a single vector component. 

the state transition cube form a cycle but this is an antilimit cycle [32] rather 
than a limit cycle since a slight perturbation will cause this system to move 
towards one of the attracting regions 000 or 111. The resulting state transition 
diagram is B3 in Fig. 3. The B 3 system can represent a bistable system with two 
attracting regions like the B2 system discussed above. There are three other 
versions of the B 3 system which are equivalent to that depicted in Fig. 3 but 
which have 100 and 011, 101 and 010, and 110 and 001 as the pairs of 
attracting regions. These arise from the three equivalent influence diagrams of 
type C in Fig. 4 where unique positive arrow joins X to u Y to Z, or Z to X, 
respectively. Feedback circuits of the types A and C in Fig. 4 are therefore 
called B3 circuits and in the absence of other circuits generate bistable systems 
around unstable equilibrium points (bifurcation points). 

Fig. 4. Prototypes of the four classes of in- 
fluence diagrams of the three reference reactant 
systems containing a single feedback circuit 
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Now let us consider the influence diagram B in Fig. 4. Application of the Glass 
algorithm to the corresponding truth table (Table 4) produces a state transition 
diagram with the following features: 

1) The directions of the arrows on the six edges 000---~100, 100---~110, 
110---~111, l l l--~011, 011--~001, and 001--~000 define a cycle of length 6. 

2) The remaining six edges are oriented towards this cycle so that it can 
function as a true limit cycle (in contrast to the cycle of length 6 in the B3 
system discussed above). It therefore is a cyclic attractor in the terminology of 
Glass and Pasternack [25]. 

3) The vertices 101 and 010 have all of their edges directed away from these 
vertices and therefore represent repelling regions. 

This state transition diagram corresponds to C3 in Fig. 3. This system corres- 
ponds to the dynamics of the Belousov-Zhabotinskii reaction [21]. There are 
three other symmetry-related versions of the C3 state transition diagram (Fig. 
3). The two with 100 and 011 and with 001 and 110 as the pairs of vertices 
representing repelling regions result from influence diagrams similar to B (Fig. 
4) but with the unique negative edge joining X to Y and Y to Z, respectively. 
The third symmetry-related version of the C3 state transition diagram has 000 
and 111 as the pair of repelling regions and arises from the influence diagram 
D in Fig. 4. Furthermore, reversing the directions of the circuit in the influence 
diagrams B and D reverses the direction of the limit cycle in the corresponding 
state transition diagram. 

There is an interesting duality of the partitioning of the eight vertices of the 
cubes in the B 3 and C3 state transition diagrams. In the B3 state transition 
diagram two vertices represent attracting regions and the remaining six vertices 
form a possible antilimit cycle (or cyclic repeller). Conversely, in the C 3 state 
transition diagram two vertices represent repelling regions and the remaining 
six vertices form a possible limit cycle (i.e., cyclic attractor). 

8. Three Reference Reactant Systems Containing Multiple Feedback Circuits 

The previous sections show that simple chemical systems containing two or 
three reference reactants and a single feedback circuit generate two competing 
attracting regions (e.g., B2 and B3 in Fig. 3) or limit cycles (e.g., C2 and C3 in 
Fig. 3) around unstable equilibrium points. We now wish to consider possible 
three reference reactant systems containing two feedback circuits of the follow- 
ing types: 

1) Systems containing one circuit of length 3 and one circuit of length 2 (i.e., 
B 2 q- B3, C 2 -'~ B3, B 2 + C3, and C2 + C3). 

2) Systems containing two circuits of lengths 2 (i.e., B2+B2, B2+(72, and 
c2 + c2). 

The influence diagrams for possible systems containing one circuit of length 2 
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A B C D 

E F G H 

d K L M 

N P Q R 

Fig. 5. Influence diagrams for 16 classes of three reference reactant systems containing one 
feedback circuit of length 3 and one feedback circuit of length 2 

and one circuit of length 3 are illustrated in Fig. 5. Similarly, the influence 
diagrams of possible systems containing two circuits of length 2 are depicted in 
Fig. 6. In Figs. 5 and 6 only one influence diagram of each of the possible 
classes is depicted. The corresponding truth tables are given in Tables 5 and 6. 
Examples of state transition diagrams for the seven possible binary superposi- 
tions of B2, B3, C2, and C3 circuits are depicted in Fig. 7. These were 
determined from the truth tables (Tables 5 and 6) by the Glass algorithm with 
the following additional features: 

1) The effects of each feedback circuit must be considered separately. Thus 
any edge arrow direction possible for an individual feedback circuit must also 
be considered possible for a multiple feedback circuit system containing this 
particular individual feedback circuit. 

2) In some cases, consideration of the different feedback circuits will lead to 
opposing arrow directions on a given edge of the n-cube. In such cases 
movement  along this edge in both directions is possible. 

3) Addition of feedback circuits will increase the freedom of motion along the 
edges of the n-cube thereby increasing the number of cycles and removing 
attracting regions. 

4) The effects of superposing the basic types of individual feedback circuits B2, 
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Fig. 6. Influence diagrams for 10 classes of three reference reactant systems containing two 
feedback circuits of length 2 

I0 ~ 0 1 1  ~ 0 1 1  ~ 0 1 1 1 0 1  . 111 100 I01 . 111 104 I D O l , , , ,  

000 010 000 010 000 010 
B2+ B3 Cz + B3 Bz+ C3 

101 111 
I 0 0 ~ ~  

~ 011 
000 010 

Cz + C3 

I01 111 101 111 101 111 

000 010 000 " 010 000 ~ 010 
B2 + B2 B2 + C2 Cz + Cz 

Fig. 7. Examples of state transition diagrams for three reference reactant systems containing 
two feedback circuits 
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Table 5. Tru th  tables for representat ive three reference reactant systems with two circuits: one of 
length 3 and one of length 2 

State at t ime = t + 1 
Initial B 3 + B 3 C 2 -b B 3 B 2 q- C 3 C 2 -I- C 3 

state (A in Fig. 5) (B in Fig. 5) (C in Fig. 5) (E in Fig. 5) 
t i m e =  t 2 circuit 3 circuit 2 circuit 3 circuit 2 circuit 3 circuit 2 circuit 3 circuit 
X Y Z  X Y Z  X Y Z  X Y Z  X Y Z  X Y Z  X Y Z  X Y Z  X Y Z  

0 0 0  0 0 0  a 0 0 0  a 1 0 0  b 0 0 0 "  0 0 0  ~ 1 0 0  b 1 0 0  b 1 0 0  b 
1 0 0  0 1 0  0 1 0  1 1 0  b 0 1 0  0 1 0  1 1 0  b 1 1 0  b 1 1 0  b 
0 1 0  1 0 0  0 0 1  0 0 0  b 0 0 1  1 0 0  1 0 1  0 0 0  b 1 0 1  
0 0 1  0 0 1  ~ 1 0 0  1 0 1  1 0 0  0 0 1  ~ 0 0 0  b 1 0 1  b 0 O 0  b 
1 1 0  1 1 0  ~ 0 1 1  0 1 0  b 0 1 1  1 1 0  ~ 1 1 1  b 0 1 0  b 1 1 1  b 
1 0 1  0 1 1  1 1 0  1 1 1  b 1 1 0  0 1 1  0 1 0  0 0 1  b 0 1 0  
0 1 1  1 0 1  1 0 1  0 0  i b 1 0 1  1 0 1  O 0 1  b 0 0  I b O 0  I b 
1 l 1 1 1 1  ~ 1 1 1 "  0 1 1  b l 1 1 "  1 1 1  a 0 1 1  b 0 1 1  b 0 1 1  b 

a Transi t ions involving an unchanged  state vector. 
b Transi t ions involving change of only a single vector component .  

Table 6. Tru th  tables for representat ive three reference reactant  systems with 
two circuits of length 2 

State at t ime = t + 1 

Initial B 2 + B 2 (A in Fig. 6) B 2 + C 2 (B in Fig. 6) C 2 + C 2 (D in Fig. 6) 
state Left  Right  Left Right  Left Right  
t ime = t circuit circuit circuit circuit circuit circuit 
X Y Z  X Y Z  X Y Z  X Y Z  X Y Z  X Y Z  X Y Z  

0 0 0  0 0 0  a 0 0 0  a 1 0 0  b 0 0 0  a 1 0 0  b 0 0 1  b 
1 0 0  0 1 0  1 0 0  a 1 1 0  b 1 0 0  ~ 1 1 0  b 1 0  i b 
0 1 0  1 O 0  0 0 1  0 O 0  b 0 0 1  0 0 0  b 0 O 0  b 
0 0 1  0 0 1  ~ 0 1 0  1 0  I b 0 1 0  1 0  I b 0 1 1  b 
1 1 0  1 1 0  ~ 1 0 1  0 1 0  b 1 0 1  0 1 0  b 1 0 0  b 
1 0 1  0 1 1  1 1 0  1 1 1  b 1 1 0  1 1 1  b 1 1  i b 
0 1 1  1 0 1  0 1 1  ~ 0 0  i b 0 1 1  a 0 0  I b 0 1 0  b 
1 1 1  1 1 1  ~ 1 1 1  ~ 0 1 1  b 1 1 1  ~ 0 1 1  b 1 1 0  b 

a Transi t ions involving an unchanged  state cector. 
b Transi t ions involving change of only a single vector component .  

B 3 ,  C 2 a n d  C3 l e a d  t o  c o n s i s t e n t  r e s u l t s  r e g a r d l e s s  o f  t h e  a c t u a l  i n f l u e n c e  

d i a g r a m s .  M o r e  s p e c i f i c a l l y ,  e v a l u a t i n g  e a c h  o f  t h e  p o s s i b l e  b i n a r y  s u p e r p o s i -  

t i o n s  o n c e  is  s u f f i c i e n t  t o  d e t e r m i n e  t h e  c o r r e c t  d y n a m i c s  f o r  t h a t  p a r t i c u l a r  

b i n a r y  s u p e r p o s i t i o n  a n y  t i m e  t h a t  i t  i s  e n c o u n t e r e d .  

T h e  s t a t e  t r a n s i t i o n  d i a g r a m s  o b t a i n e d  f r o m  t h r e e  r e f e r e n c e  r e a c t a n t  s y s t e m s  

w i t h  t w o  f e e d b a c k  c i r c u i t s  a l l  c o r r e s p o n d  t o  o n e  o f  t h e  f o l l o w i n g  t h r e e  d y n a m i c  

t y p e s :  

1) S y s t e m s  c o n t a i n i n g  n o  c y c l e s  o t h e r  t h a n  p o s s i b l y  a c y c l i c  r e p e l l e r  l e a d i n g  

i n t o  a t t r a c t i n g  r e g i o n s .  T h e  B 2  + B 3  ( A ,  J ,  N ,  a n d  P i n  F i g .  5)  a n d  B 2  + B 2  ( A ,  
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C, and K in Fig. 6) systems are of this type. These systems like the equivalent 
B3 system can represent a bistable system containing two attracting regions. 
Schematically we can say B 3 = B 2 + B 3 = B 2 § B 2. 

2) Systems containing a single cyclic attractor: The B2-} -C  3 system (C, D, H, 
and R in Fig. 5) is of this type. This system like the equivalent Ca system can 
represent a limit cycle oscillation. Schematically we can say Ca = BE + C3. 

3) Systems containing several interlocking cycles: Such systems have one cycle 
of length 6 interlocked with two cycles of length 4 on opposite faces of the 
state transition cube. The C2 + B3 (B and K in Fig. 5), C2 + Ca (E, F, G, M, and 
Q in Fig. 5), B2 + C2 (B, E, H, and J in Fig. 6), and C2 + C2 (D, F, and G in 
Fig. 6) systems are all of this type. Such systems can represent toroidal 
(biperiodic) or chaotic (aperiodic) oscillations depending upon the synchroniza- 
tion between the cycles of different lengths. A minimum of two feedback 
circuits appears necessary for this type of dynamic behavior. 

The state transition diagrams have also been checked for several of the possible 
systems of family Q in Fig. 2 which contains three feedback circuits: two of 
length 2 and one of length 3. However, addition of a third feedback circuit 
generates no new topological possibilities in state transition diagrams for the 
following reasons: 

1) Adding a B2 circuit does nothing: we have already seen how B2+Ba=B3 
and B2 + Ca = Ca. The attracting regions of the B E circuit are destroyed by the 
other circuits so that the B E circuit has no effect on the dynamics. 

2) If a B2 circuit is absent, then a three-reference reactant system containing 
three or more feedback circuits must contain two C2 circuits. However, the 
C2 + C2 combination is sufficient to generate interlocking cycles (chaotic topol- 
ogy) in the state transition diagram. Additional feedback circuits can only 
generate additional edges with arrows in both directions which at most will 
increase the number of interlocking cycles but with no fundamental changes in 
the underlying topology of the already chaotic system. 

3) Self-activation and self-inhibition (positive and negative loops, respectively, 
in the influence diagram) do not affect the cycle structure of the state transition 
diagram since they only involve a single reference reactant (this can be verified 
by applying the Glass algorithm to actual cases containing self-activation and 
self-inhibition). However, as will be seen in the next section, self-activation and 
self-inhibition may have a major effect on the stability of equilibrium points. 

9. The Existence of Unstable Equilibrium Points 

The preceding sections have derived possible flow topologies around unstable 
equilibrium points in simple two and three reference reactant systems. Another 
requirement for realization of the corresponding dynamics in such systems is 
the existence of an unstable equilibrium point or region. An example of an 
unstable one-dimensional equilibrium region is an antilimit cycle [32]. In 
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systems containing two reference reactants evaluation of the stability of 
equilibrium points requires solution of the following determinental equation 
where the zero subscripts refer to the equilibrium point being evaluated: 

= O. (6) 

( 0~)0  o 2  

The equilibrium point is unstable if Eq. 6 has at least one root with a positive 
real part. 

We have shown how solutions of equations corresponding to 6 rapidly become 
intractable in systems containing three or more reference reactants if the exact 
values of the required derivatives must be calculated. Thus in the case of the 
three reference reactant system expansion of a determinantal equation analog- 
ous to 6 (Eq. (2) in Sect. 2) to give the corresponding cubic characteristic 
equation (Eq. (3) in Sect. 2) involves a 493-term equation at one point. 
However, since a stability analysis requires only the signs of the real parts of 
the roots h of the characteristic equations rather than the roots themselves, 
crude approximations can be used for the required derivatives (aX/0X)o, etc., 
without affecting the essential results of the stability analysis except in certain 
special cases discussed below. We therefore approximate the derivatives re- 
quired for Eq. (6) in the following manner: 

0" (00__xX)0, (~_~0, 0 ~ 0 y  [+  1 if the actual derivative is positive 
(~-~)0, (~-~)0 = i0 if the actual derivative is zero (12) 

I.-1 if the actual derivative is negative. 

The process represented by Eq. (12) corresponds to determining the adjacency 
matrix [33] of the corresponding influence diagram. Solving Eq. (6) for the two 
reference reactant system and Eq. (2) for the three reference reactant system 
using the values of +1, 0, and - 1  for the actual derivatives in accord with Eq. 
(12) corresponds to solving the characteristic equation [33] of this adjacency 
matrix for its eigenvalues. We now assume that the signs of the real parts of the 
eigenvalues obtained by this method will be the same as those which would 
arise if the actual values of the required partial derivatives (Of~/OX)o, etc., were 
used. Close inspection of the actual characteristic equations obtained suggests 
the validity of this assumption is systems containing two or three reference 
reactants except for the B2 + C2 case discussed below. A rigorous proof of this 
point even for the three reference reactant systems would require a more 
detailed analysis of the root structure of the possible characteristic equations 
than is appropriate for this paper. However, this method is related to previ- 
ously used methods for classifying instabilities in chemical reaction systems [34] 
and ecological networks [35]. 

The following results are obtained when this method is used for the stability 
analysis of simple two reference reactant systems without any loops: 
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1) The B2 system (e.g., F in Fig. 1): The characteristic equation is h e - 1  
leading to the two roots 4-1. Since one of these has a positive real part (namely 
+1), this system has an unstable equilibrium point. Furthermore, the opposite 
signs of the real parts of the two roots suggest realizability of the bifurcation 
(saddle point) dynamics indicated by the B2 state transition diagram. 

2) The Ca system (e.g., G in Fig. 1): The characteristic equation is h 2 + l  
leading to the two roots :~i where i=  x/-s Both of these roots have zero real 
parts. This suggests that the necessary unstable equilibrium point for true limit 
cycle oscillations cannot exist in a pure C 2 system in accord with the results of 
Tyson and Light [17]. 

The other variants of the B 2 and C2 systems lead to the same characteristic 
equations. More generally, any influence diagrams belonging to the same 
family and exhibiting the same flow topology around unstable equilibrium 
points as determined by their state transition diagrams also lead to the same 
characteristic equation of their adjacency matrices. However, influence diag- 
rams belonging to different families have different characteristic equations of 
their adjacency matrices even though their state transition diagrams may 
exhibit the same topology around unstable equilibrium points. Thus, the 
"equality" noted above B>-t-B 3 = Bz+B2 = B 3  is valid when considering the 
flow topology around unstable equilibrium points but is not valid when 
considering the resulting characteristic equation in the stability analysis. 

Tyson and Light [19] have indicated that adding a termolecular sfep of the type 
2X+ Y= 3X can convert a two reference reactant system with the influence 
diagram G in Fig. 1 and (22 topology but without the unstable equilibria 
required for limit cycle oscillations (i.e., only zero real parts of the roots of the 
characteristic equation) into another two reference reactant system which has 
an unstable equilibrium point and which therefore can exhibit limit cycle 
oscillations. This termolecular mechanism is well known [36, 37, 38] as the 
"Brusselator". However, the termolecular step 2X+ Y= 3X corresponds to 
adding self-activating properties for X. The resulting new positive loop con- 
verts the influence diagram G in Fig. 1 to the following influence diagram: 

+ 

The characteristic equation of this influence diagram is 12-  h + 1 = 0 with the 
roots ~(1 • ix/3). The real parts of these roots are now positive (1/2) indicating the 
presence of an unstable equilibrium point. The cycle in the B2 state transition 
diagram now becomes a limit cycle in accord with the established properties of 
the Brusselator [36, 37, 38]. This simple example also shows how addition of 
self-activation can make an equilibrium point unstable without affecting the 
flow topology around equilibrium points. 

Now let us consider the two fundamentally different types of dynamic systems 
containing three reference reactants and a single feedback circuit. We arrive at 
the following characteristic equations with the indicated roots: 
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1) The B 3 system (e.g., A in Fig. 4): The characteristic equation is h 3 -  1 = 0 
which has one real root  (+1) and two complex roots with - 1 / 2  real parts. 

2) The C3 system (e.g., B in Fig. 4): The characteristic equation is 2,3+ 1 = 0 
which has one real root  ( -1 )  and two complex roots with 1/2 real parts. 

Similarly, the following characteristic equations with the indicated roots can be 
obtained for the dynamic systems containing three reference reactants and two 
feedback circuits, one of length 3 and one of length 2: 

1) The B 2 + B  3 system (e.g., A in Fig. 5): The characteristic equation is 
)t 3 -  ) t -  1 = 0 which has one real root  (+1.32646) and two complex roots with 
-0 .66323  real parts. 

2) The C 2 + B  3 system (e.g., B in Fig. 5): The characteristic equation is 
h 3 + ) t -  1 = 0 which has one real root  (+0.68233) and two complex roots with 
-0 . 34116  real parts. 

3) The B2+C3 system (e.g., C in Fig. 5): The characteristic equation is 
)t 3 - ) t  + 1 = 0 which has one real root  ( -0 .68233)  and two complex roots with 
+0.34116 real parts. 

4) The C2+C3 system (e.g., E in Fig. 5); The characteristic equation is 
~t3+ 2t + 1 = 0 which has one real root ( -1 .32646)  and two complex roots with 
+0.66323 real parts. 

All other  influence diagrams in Figs. 4 and 5 generate identical characteristic 
equations to those listed above for the influence diagram leading to the same 
topology around the unstable equilibrium point. 

The important  thing to note from these characteristic equations of three 
reference reactant systems containing a circuit of length three is that all of 
them have at least one root  with apos i t ive  real part. This means that all of 
these systems can have the unstable equilibrium points required for the types 
of dynamic behavior indicated by their state transition diagrams. The relation- 
ship of this to elementary principles in algebraic graph theory [33] is outlined 
in Appendix 1. 

Somewhat different results are obtained in the cases of the systems containing 
three reference reactants and two feedback circuits of length two (e.g., those of 
family P in Fig. 2). For  such systems the following characteristic equations with 
the indicated roots are obtained: 

1) The B 2 + B  2 system (e.g., A in Fig. 6): The characteristic equation is 
)t 3 - 2 ) t  = 0 which has the roots 0, x/2, and -~,/2. 

2) The BE+ C 2 system (e.g., B in Fig. 6): The characteristic equation is h 3= 0 
which has three zero roots. 

3) The C2+C2 system (e.g., D in Fig. 6): The characteristic equation is 
h3+2)t  = 0  which has the roots 0, ix/2, and -i~/2. 
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All of these systems have characteristic equations with one zero root and two 
roots of equal absolute value and opposite signs. These last two roots may 
either have a real component or be pure imaginary. If they are pure imaginary 
(e.g., the (22+ Ca system) then an unstable equilibrium point is absent. The 
system therefore cannot have the unstable equilibrium point required for 
realization of the dynamics indicated by the state transition diagram. The 
B2 + (72 system, which generates a characteristic equation with all roots zero, is 
a borderline case between the B2+B2 system with an unstable equilibrium 
point (i.e., the positive x/2 root) and the (72+ (72 system without an unstable 
equilibrium point. For this reason, the presence of an unstable equilibrium 
point in the B2 + C2 system will be sensitive to the relative values of the various 
rate constants. A more precise treatment considering the actual values of the 
rate constants is necessary in order to determine the presence or absence of 
unstable equilibrium points in the B2+ (72 system, whereas the simplified 
treatment used in this section appears sufficient to determine the presence or 
absence of unstable equilibrium points in all of the other systems. 

The general pattern emerging from the treatment in this section is that systems 
containing feedback circuits of length three always have unstable equilibrium 
points whereas systems containing only feedback circuits of length two, particu- 
larly those containing cycles in their state transition diagrams such as C2 and 
(22+ C2, may not have unstable equilibrium points. However, addition of 
self-activation (a positive loop) to a system containing only feedback circuits of 
length two (to give, for example, a Ba + C2 system) can generate an unstable 
equilibrium point. 

10. Relationship to Known Systems Exhibiting Chaos and Toroidal Oscillations 

We now extend the treatment discussed in the previous sections to some 
dynamic systems reported by previous workers to exhibit chaos (nonperiodic 
oscillation) or toroidal (biperiodic) oscillation. In all cases these systems are 
composite systems which require two influence diagrams to represent the entire 
relevant region of concentration space. However, since in all cases both of the 
influence diagrams of the composite system lead to similar dynamics, this 
complication is not serious. Fig. 8 shows some influence diagrams pertaining to 
several such systems containing three reference reactants. 

Consider first the Lorenz equations reported [12, 39] to exhibit continuous 
chaos: 

S;= - 1 0 X +  10Y (13a) 

Y= 2 8 X -  Y - X Z  (13b) 

2 = X Y -  (8/3)Z (13c) 

The influence diagram of this system will depend on whether Z is greater or 
less than 28. If Z < 2 8  the influence diagram is A in Fig. 8. Ignoring the three 
self-inhibition loops this is a B2 + C2 + C3 = (72 + (73 system. If Z > 28 we get an 
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Fig. 8. Influence diagrams of dynamic systems re- 
D D' ported to exhibit chaos or toroidal oscillation 

influence diagram corresponding to a C2+ C2+ C3 system. Both of these 
systems contain the interlocking cycles required for chaos. 

Rbssler has modified the Lorenz equations (13a)-(13c) to give the following 
system [12] exhibiting a chaotic flow: 

2 = - Y -  Z (14a) 

= X +  0.23( (14b) 

= 0.2 + X Z -  5.7Z (14c) 

If X > 5 . 7  the influence diagram of this system is B in Fig. 8. If X < 5 . 7  the 
influence diagram is identical to B in Fig. 8 except for a change in the sign of 
the loop on Z from positive to negative. Another  one of R6ssler's systems 
exhibiting chaotic flow is the following: 

2 = x - x Y - z  
Y =  X 2 -  a Y  

,Z = b X -  c Z  + d. 

(15a) 

(15b) 
(15c) 

If Y < I  the influence diagram of this system is C in Fig. 8. If Y > I  the 
influence diagram is identical to C in Fig. 8 except for a. change in the sign of 
the loop on X from positive to negative. We therefore see that both (14a)- 
14c) and (15a)-(15c) are composite systems which have identical influence 
diagrams if self-activation and self-inhibition loops are ignored. Both are 
C2 + Ca systems. We have shown above how the C2 + C2 system gives a state 
transition diagram containing the interlocking cycles required for chaotic 
oscillations around unstable equilibrium points but does not generate an 
unstable equilibrium point. However,  addition of self-activation loops to a 
Cz + C2 system can convert existing equilibrium points into unstable ones as 
was shown above for the simpler Cz system. 
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R6ssler has used the following system of equations for generating toroidal 
oscillations [11]: 

Y X X=aX- (-~-~l)+C (16a) 

Z Y (16b) 

2 = dX- e(Xa- f)( z ~ 3  ). (16c) 

In this case the influence diagram depends on whether the term dX or the term 

-eX2(z~3) dominatesintheexpressionforZ. IfthetermdXdominates, 
then the influence diagram for system (16a)-(16c) is D in Fig. 8. Ignoring the 

circuits of length 1, this is a Ca+B 3 system. If the t e r m - e X a ( Z @ k ~ )  

dominates, then the influence diagram for system (16a)-(16c) is D' in Fig. 8. 
Ignoring the circuits of length 1, this is a C2 + C3 system. Both the C: + C3 and 
the (22 + B3 systems (Fig. 7) contain the interlocking cycles required for chaotic 
or toroidal oscillations. Differentiation between chaotic and toroidal oscilla- 
tions requires a more precise calculation on this specific system and thus is 
beyond the scope of the methods used in this paper. In any case, however, the 
techniques outlined in this paper clearly indicate that R6ssler's systems rep- 
resented by Eqs. (16a)-(16c) have state transition diagrams containing the 
interlocking cycles required for toroidal oscillations and thus are consistent 
with his observations. 

A further observation is the presence of loops, including particularly negative 
loops representing self-inhibition, in the known systems exhibiting chaotic 
oscillations in addition to appropriate combinations of circuits of lengths two 
and three to account for the observed qualitative dynamics. The analysis in this 
paper indicates that the loops in the influence diagrams corresponding to Eqs. 
(13a)-(13c), (14a)-(14c), (15a)-(15c), and (16a)-(16c) are not necessary to 
generate the correct topology around the unstable equilibrium points. How- 
ever, one self-activation loop is needed in the two systems (14a)-(14c) and 
(15a)-(15c) to generate an unstable equilibrium point in the C2+ (?2 system, 
which otherwise would not have the unstable equilibrium point required for 
realization of the dynamics indicated by its state transition diagram. The 
self-inhibition loops are probably needed in order to prevent an unbounded 
increase in the concentrations of the reference reactants. However, it neverthe- 
less might be possible to find systems exhibiting toroidal oscillations and chaos 
containing fewer self-activation and self-inhibition loops but with otherwise 
similar influence diagrams to those depicted in Fig. 8. 
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11. Condusions 

This paper shows that the following four-step procedure is useful for investigat- 
ing the qualitative dynamics of simple chemical systems containing three and 
possibly even more reference reactants: 1) An influence diagram is constructed 
representing the relationships between the reference reactants; 2) This in- 
fluence diagram is used to generate a truth table indicating possible transitions 
between state vectors representing the signs of the time derivatives of the 
reference reactant concentrations; 3) The resulting truth table is used to 
determine a state transition diagram representing the flow topology of unstable 
equilibrium points as directed edges of a cube; 4) The characteristic equation 
of the adjacency matrix of the influence diagram is solved to determine the 
possible presence of an unstable equilibrium point associated with realization 
of the dynamics indicated by the state transition diagram. 

This method has been applied to all possible dynamic systems containing two 
or three reference reactants with the minimally necessary activation-inhibition 
relationships for oscillatory behavior. In the case of systems containing two 
reference reactants, there are only two basic types of dynamic behavior 
corresponding to bistable systems (B2) and limit cycles ((72). However,  the (72 
system requires an additional self-activation loop to acquire the unstable 
equilibrium point associated with realization of limit cycle oscillations. Adding 
a third reference reactant generates the additional possibility of systems 
containing interlocking cycles (e.g., C2A-B3) which can correspond to systems 
exhibiting chaos or toroidal oscillations. 

The challenge to the chemist lies in finding real chemical systems exhibiting 
these various types of exotic dynamic behavior. Several examples are known of 
real chemical systems exhibiting limit cycle oscillations (e.g., the Belousov-  
Zhabotinskii and the Bray-Liebhafsky reactions). However,  real chemical 
systems have not yet been found exhibiting some of the more exotic of the 
above types of dynamic behavior including toroidal (biperiodic) oscillations and 
chaos (aperiodic oscillations). The treatment in this paper shows how realiza- 
tion of these more unusual types of kinetics requires the discovery or design of 
real chemical systems containing two or more interlocking feedback circuits of 
the correct types. 
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Appendix 

The Appendix outlines a proof for the following lemma which arises during the 
course of the treatment of this paper: 
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Lemma: A dynamic system represented by an influence diagram containing 
three vertices, a circuit of length 3, and no loops (i.e., no self-activation or 
self-inhibition) must have an unstable equilibrium point. 

Proof: A dynamic system represented by such a graph has an unstable equilib- 
rium point if the cubic equation derived from the expansion of the determinant 
of its adjacency matrix (see Eq. (2) in the text) 

A A 3 +  B A 2 +  CA + D  = 0 (3) 

has at least one root with a positive real part [26, 27]. The coefficients in Eq. 
(3) have the following significance in terms of the expansion of the determinant 
of the adjacency matrix in terms of sesquivalent subgraphs [40, 41]: 

A = 1 (17a) 

B = the sum of the weights of the loops (17b) 

C = the sum of the weights of circuits of length 2 (17c) 

D = the sum of the weights of circuits of length 3. (17d) 

The weight of a circuit (e.g., (17c) and (17d)) is determined by multiplying the 
weights of all of the directed edges forming the circuit. 

The assumption of the absence of loops in the influence diagram means that B 
must be zero. Furthermore the assumption that there is a circuit of length 3 
means that D cannot be zero. Eq. (3) therefore becomes Eq. (18) where C can 
be any positive or 

A3+ CA + D  = 0 (18) 

negative real number including zero. 

Inspection of the standard formulas for the roots of cubic equations [42] 
reveals that the sums of the real parts of the three roots of an equation of the 
form (18) (i.e., one with no A 2 term) must be zero. This means that Eq. (18) 
must have at least one root with a positive real part unless all three roots are 
zero or pure imaginary (i.e., zero real part). However,  the product of the three 
roots must be D r  0. Therefore  none of the roots of Eq. (18) ( D ~  0) can be 
zero, at least two of the three roots must have non-zero real parts, and at least 
one of these non-zero real parts must be positive. Therefore,  a dynamic system 
represented by a graph with a characteristic Eq. (18) (Dsk 0) corresponding to 
the presence of a circuit of length 3 must have an unstable equilibrium point. 
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